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I. INTRODUCTION

Problems of analysis and synthesis of radiating systems require

appropriate functions in which to expand a source distribution and

Sassociated radiated field. To be most useful it is desirable that such

functions be suitable for source and field representations simultan-
t eously, that they be complete and that they be orthogcnal in some sense

over both the source and field region of interest. In the familiar

case when the regions of the source and the field coincide with coordin-

ate surfaces of coordinate systems in which the Helmholtz equation is

separahle, the corresponding eigenfunction representation is valid for

both the source and the field. The characteristic modes of loss-free

bodies of arbitrary shape, introduced by Garbacz rl,21, and elaborated

by Harrington and Mautz [3,41 give another possible representation where

the source and field observation regions coincide, but the orthogono!

properties of these functions apply only to the body surface and the

sphere at infinity.

In this report we treat the more general case where the region

of observation does not, necessarily coincide with the source region,

resulting in orthogonal properties over more general regions than the

body surface and the sphere at infinity. An investigation of the validity

of Parseval's relation for a more general operator equation than a Fourier

transform leads us to an eigenvalue equation of the Hermitian iterated

operator, whose solutions shall be called eigenscurces and the radiated
fields of which shall be called eigenfields. An Ligensource and an

associated eigenfield each satisfies an orthogonality property simul-

taneously but, in general, over different regions of space. The sets

of eigensources and eigenfields can then he used as convenient basin

functions with which to solve various problems ;ystematically.

E[xampl1 ts are di,,.,v,1oped for the ont.imizat. ion of an array under

given constraints and for thn determinat ion of aporturf' distrilbutions

I_



transferring maximum power to a second aperture. In the latter case,

the eigenfunctions arising from the present theory are shown to be the

prolate spheroidal functions. In the case where the eigenequation is

developed from a current source flowing on a closed surface and the

component of the corresponding electric field tangential to the same
surface, we are led to eigencurrents and eigenfields which differ from

characteristic modes (which involve the same two quantities); whereas

a characteristic current and a characteristic f;eld display differing

amplitude distributions but maintain a constant phase relationship over

the surface, the eigencurrents and eigenfields introduced here display
similar amplitude distributions but maintain a complex corjugate phase

relationship over the surface [51. Only when the surface corresponds

to a coordinate of the coordinate systems where separability applies

do the characteristic functions and the eigenfunctions of the Hermitian

iterated operator coalesce to become one and the same such as in the

case of the circular conducting cylinder and cunducting sphere. Examples

are discussed involving the infinite rectangular conducting cylinder,

and the linear conductor.

II. EIGENFUNCTIONS ASSOCIATED WITH SOURCE AND FIELD

We consider a source s and a resulting field f all in a linear

medium which are related by an integral operator G as

f = Gs . (1)

When the operator equation (1) happens to be a Fourier transform (when

for example s is a planar source and f is the corresponding far field

on the sphere at infinity) we know that f and s satisfy a Parseval's

relation, i.e., the norm of f is equal to the norm of s. in the fol-

lowing section we inquire whether or not this same result applies to

the more general operator equation (1).

2



A. Eigenvalue Equation of a Hermitian Iterated Operator

To begin, let us define the inner product of two sources, (si,sj)
and the inner product of two fields (fi,f as follows:

(sis ) = f si(kx)sC(kx)d(kx) (2) -4
1 R s 3

37
(fi, f ) = f w(kx)f (kx)f.(kx)d(kx) (3)

Rf Rf I

where w(kx) is a real weight function (often unity) and R and Rf are

the regions where the sources are distributed and the fields are ob-

served, respectively. The superscript c denotes complex conjugate and

k is the wavenumber in terms of the wavelength X.

Using Equation (1), we obtain

(fi'f ) = ( s i.3 j

R f Rf

S s(4)
Rs

where (* is the adjoint. operator of 0. The iterated operator C*' is
Hermitian and is denoted henceforth by+

Hi
H - •:' ;. (5)

TMore explicitly, since ; is an integral operator, Equation (1) is of

the form

f(kx) = (s(kx') F G(kx,kx')s(kx')d(kx')

hs 3Ik.4
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I (Footnote Continued)

where G is the integral kernel. Therefore Equation (3) becomes
r

(filf i)Rf w(kx)i. G(kx,kx')s (kx')d(kx' I c (k<,kx")s W(kx Id(kx d(kx)jRf Rf LRsJ

R 1" I

S S LjSt f
"s r C. c

(S " ; W r k ' • i k )GCýkx,kx' )g(kx,kx" ld(Kx\,! s (kx")d(kx"' dfkx')

where we have used Equiation A4) on the left sirde of the above equation.

Understanding that the inner product ovet the so-,rce region R is defined

by Equation (2) and comparing the two sides of this equation, we see

that

H;S (kx );*" .kx ) wJ w(kx.GgC(kx,kx )G(kx,kx )d~k.', ik k x")

In this expression we recognize that WC(kx: = w"kx) beca,.se the weighting

function w(kx) is real. It is more usual to define an iterated operator

without the weighting function.

If 13 is the Fourier operator, i reduces to an identity operator

and Equation (4) is Parseval's relation. For a similar relation to

hold in our case w'th a more general operator, the source mnust satisfy

an equation of the form

4
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whence Equation (4) becomes

--i~ Vi (Si'sj)I

Rf R s

We recognize Equation (6) as an eigenvalue equatiun of H with eiqenvalues

vi and eigenfunction solutions sI which satisfy the orthonormality con-

dition

(sis.) =•iS
( i s

S

where ýii is the Kronecker delta. From Equations (4), (7) and (8) we

also have

(f i Rf (s i R. s (, ' 9 )

We shall call {s} the eigensources dlefined on R s and !fi} the oiqenfields

defined on R Tho iterated hoer:n tian operatoor property of 1: assures

us that the are real and positive s..n finito' andi that the

are orthogonal and complete on R if F is not ie:uoroperlv s ingul ar.

The same may be said of the if }. We sh a 1! order the ,i genva I ues {V.

such that their values decrease with increas ing index i . lhis, together

with Eouations (S) and (9), inil lips that the ratio of tne norm of f

to the norm of s, is largest for the lowest e genvalue i and equal

to it numerically.

Now that we have def ined pertinent. qunt iti es in qeneral terms,

let us consider a few simple himt useful oxamp!r-, of the abihovo heory.

InI the fol lowinTg s•ct 'ons an e+x,)t 1l.n1 convntion i5 aossunmod anJ!

suppressed.



(.3 Eigensources and Eigenpatterns of Arras

F i g ure 1 shows an N-el ement li near array of isotropic point sources

with uniform spacing d. We consider the source s to be the N array

elements with excitation strengths sl, S2 ... SN dfined on the array

proper, and the field f to be the corresponding far-radiated field pattern

function f(9) defined on the sphere at infinity. In this case the

operator Equation (1) becomes

N

f(7) = , G (n)s 10)
n~ n,

with
t 1 G ( n ) j e n k ' c L, .s o 11 

1 )

and Equat ions _) and (3) become

(s,s)R -- s -s (i2)

11

2-, f2 (0 f (F, S .i f~ ivdo (13)
f o

The weight function w in this case is 2nsin-,. The eigenvalue equation

(6) reduces to the algebraic equiation

N,
H(n,m)s . , 1 ,n, . N (14)m~1

where the operator i reduces to in N xN maitrix H with elereonts

ii ip.(n-in) k (i n

6
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The eigenpattern fi(O) corresponding to the ith eigensource S. is

N
f (O) = . G (n)s (16)In I "- in

The sets {siI and {ffi are useful in at 1east two ways. First,

the eigensource with the larqest eigenvalue is the source which radiates

the largest power while the norm of the source is fixed, i.e., the array

has the highest radiation efficiency. Secondly, we can synthesize a

given arbitrary pattern f(9) in a least mean square sense i)y choosing

the N source excitations in Equation (11 t, he

i) .. . ... n n.- "!.rq17)

F iyL LIT ?b ind 31 show callcatoll ri• nsiurcc and e• enpatt.rn
magnitudes for N:5, d-fl.IX.

C. Focussing the F ield of an Array

As a secojnL exa•mpl, cnnsider thp same Iinear array discussed above,

but whose field is observed at. a point P in the near field region as

pictured in Figure 4. Here, the appropriate : operator reduces to a

lxN matrix with elemerts

G,W'n . n-l,? .... N (
ri

whetr, thi, rY WO (1(.f in,,l if F i rfum •• .4, t.. hl th opr at , 1; r••uhd ces tI

an NxN mnitrix with e,1irmmit,

fl~m~mi) .i ,ii. 9-T9

k r I r'

_n _ll flA
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The norm of s remains the same as Equation (12) but because region Rf
in this case is the near field point P the norm on f becomes simply

(ff)p P f(p)fC(p) (20)

It is obvious that the eiqensource with the largest eigenvalue

yields the largest field at point P while the norm of the source is

fixed. Figure 5 shows this case of an opt irnal ly focussed 1 inear array

with N=5, d=0.5X and P located at (2X,1.5X) (xp,Z p). We comment that

the optimum field at P is larger by 0.11 dB than is the field obtained

there from an array .rt ce-nhacre ,incnts with uniforv amplitudes.

D. E i gensources and Eigenfields of a Slit Aperture

As an example of a continuously distributed radiating system,

consider two identical planar parallel slits of width 2a and separation

b, as Shown in Figure 6. The left slit 1s considr,.d to form a source

and the right slit serve,, to observe the field due to the source. For 'I

such a two dimensional problem C is the integral operator F

ka
f(kx2 ) I G(kx?,kxl) s(kxl) d(kxl) (?I),1

-ka

with kernel

~4 5 j
Gf(kx,-,kx, e -' 21 (M )

? T11

The Fresnel approx imat ion has beon assumed in [qiation (?Ž). The :

Hermitian iterated operatnr ii is an integral operator with kernel

Ii3
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Figure 5. Optimum source distrihutior, of five element linear
array antenna focussed in tVe near field reqion compared

with uniform amplitude and cophýise distribution.
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Figure 6. Two apertures with width 2a and separation b.
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ka
H(kx,kx") If GC(kx 2 ,kxý) G(kx 2 ,kx". 1 ) d(kx 2 )

I -ka 2

x 2 x2

2 k sin xi )1 (23)

Defining a modified source function r(kxI) and a real symmetric kernel

h(kxj,kx'I) by

(kx,)
2

r(kx1 ) e s(kxI) (24)

[sin .2(kx -kx.')_11
h(kxj~kx'") a ,-b-i- - (25)1

1Lb (k xjv kx ")

the eigenvalue equation (6) becomes A

ka ,i 012.. (6
f h(kxjkx')r'"kx'j)d(kx'j) = viri~kx') i 0,1,2,... (2611
-kaI

Once this equation is solved for {ri}. the set of eigensources {si}

and eigenfields {fij are given, respectively, by

, 2

(27)
s (kx. ) NIri(kxI) e

I II

1*



and

ka
fi(kx,) = Ni f G(kx 2 ,kxI) si(kxl) d(kxl)

-ka

j (kx,12 kx kx1
b ka +j k_
ekb- f e ri(`xI) d(kxI)

-ka

(28)

"where N. are convenient normalizing constants. With a change of

variables

ka T (29)
ka (ju

=- : Q (30)

kxý = t (31)

kx' = s (32)

equation (26) may be rewritten in the form

T/?2 _ 11
-T/2 m,• --s)- ri(s)ds = viri(t), i 0,1,2 ... (33):

This equation has been studied extensively hy Slepian and Pollak-7

who show its solutions to be the angular prolate spheroidal functions,

ri(t) So i (c,t) and its eigenvalues to be

L R • L oR (cl , 0,1,, .... (34)

16
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where R•I)(c,I) are radial prolate spheroidal functions. The parameter

c 2-- or, according to Equationý, (29) and k(30), c 7 • 27F where

F is the Fresnel number

2
F = a--• (35) A

Xb

Asymptotic expressions for Xi(c) for small and large values of c (i.e.,

small and large values of the Fresnel number) with index i being fixed

have been derived by Slepian and Sonnenblack [91.

For the normalization condition expressed by Equation (8) to hold,

the ith eigensource is I

(kx1) 211 2kb

21

L .1fi(kx2) vil/(c) e- F• -( cl)So• .c,kx2) x2

S= -J--g -4 " c , k So~ x, s gnj n (M c l) (37\

Since the {Soi} form a complete orthogonal set on either slit, a source

and its field are conveniently expanded in terms of {si1 and {fi}, re-

spectively. The eiqenvalue vi(c) cjrresponds to the ratio of the power

received to the power transmitted in the ith node. Furthermore,

the iýO mode has the largest eigenvalue, v (C), from which we conclude
0

thdt power transfer between apertures is maximized in this lowest order

mode. Using this fact and the fact f3S that for small c (i.e., small

F),

0 (c) ?c 4F, (38

17
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we can state that for two distantly separated slits the received power

cannot exceed 4F times the transmitted power. For large c (i.e., large

F) it is known 78, that

Vo(c) 1 - 4 7c e- 2c - 4ii y/7 e-47F (39)

which has a value only slightly less than 1 for F values larger than

F = 1/2.

it is worthwhile to note that the lowest order (optimum) source

has a positive-going parabolic phase distiibution (Equation (27)) which

tends to compensate for the diverging effect of a finite slit; the field

achieved by this optimum source has a negative-going phase

distribution (Equation (28)).

III. EIGENVALUE EQUATION WITH HERMITIAN

WEIGHT OPERATOR

It has been shown in the previous sections that the eigenvalue
equation of the Hermitian iterated operator yields eigensources and

eigenfields which can form useful basic sets in which to expand arbitrary

source and field distributions. It was also shown that an optimum source

can be determined which produces maximum-field over the designated field

region under the condition that the norm of the source is fixed. In

this section we extend the theory to encompass more general conditions

by replacing Equation (6) by an eigenvalue equation of the Hermitian

iterated operator which includes a Hermitian weight operator, i.e.,

H Vi tis1  (40)

Here we assume that the weight operator 1 is Hermitian and positive

definite in which case it can be shown that. the solutions of Equation

(40) satisfy the relations

_I



I
(si, Hsj) R =i (41)

R I
(sg s. =4?

(4111(Si'H j)R : i ij ( 2

s

Equations (40), (41), and (42) are extensions of Equations (6), (8),

and (9), respectively. Thus, we can interpret the eigensource with

the largest eigenvalue as being the optimum source in the sense that

SHS)R is largest, (srls)R being fixed (rather than s being
R s s

fixed as developed in Section II).

In work to follow on arrays it will be useful to articulate the

operators in Equation (40) in the form of matrices. If U is the orthog-

onal matrix which diagonalizes H and Hi is the diagonalized matrix, i.e.,

U*HU== Un (43)

"11N

then Equation (40) transforms to

( -11 2  U*HU11-1/ 2 )(p 12 U* 'i 1), (44)

or

A

H' s' = isi (45)
1 11

whose eigenvalues satisfy the orthogonality condition

(si s) (46)i

1 3 R ij()
S I

10

I
I



It is easy to verify that Equations (45) and (46) are consistent with

Equations (42) and (41), respectively.

A second useful case arises when If, in addition to being Hermitian

and positive definite, is also factorizable as

#" ,"-- *
U ~AA(.17)

Equation (40) then transforms to

(A Pi ) (AA s (4")

or

S vs (49)

whose eigensolutions satisfy the orthoito.rmal ity condi tion

Rs . . - (50)1 R
5

It is easy to verify that Equations (49) and (50W lead back to Equations

(1?) and (41), respective ly. In additiin it ran he shown i 9' that when

Ii is factorizable the mlnimi im ei._ionval..ie i (in matrix notation)

Vm in 1 \A H A*)

and the correspondinq eigensource is

Smin - H-A. (52)

20



A. Maximizing Endfire Radiation of an Array

While Fixing the Radiated Power in a

Specified Angular Sector

A linear array if N isotropic point sources equispaced a distance

d along the z-axis as sketched in Figure 1 radiates into the conical

sector about endfire shown in Figure 7. The power radiated is given

by

P 2- s sns c e j(m-n)kdcosO sinO dO
m=l n=l in

0

N N
Sn] (53)

19=l nil

where

-i(rn-n) k1(cosO0-1) sin m-n 7- (l+cns00)
H(m,n) = 27, e 0 n kd

(TT- n)

(54)

H(m,n) are the elements of an NxN Herinitian iratrix A. It is clear that

P appears in the form

P (S,Hs)R 55)
s

which, if we concstrain P to be unity, corresponds to Equation (41).

Similarly, the power density radiated in the endfiro direction, O=z, is

S (s,Hs)R (56)
s

?I

L
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where H is an NxN matrix whose elements are

H(m,n) = e-j(m-n)kd (57)

The optimum source, that is, the source which maximizes the end-

fire power density S while constraining the radiated power P to a specified

sector is the eigensource with the largest eigenvalue satisfying Equation

(40) with H and H specified by matrix elements given in Equations (54)

and (57), respectively. Field pattern- for an example with N=5, d=O.3X,

0,-300(300)1200 are shown in Figures 8-10.

g IV. EIGENVALUE EQUATION OF PERFECTLY CONDUCTING BODIES j
A

Garbacz -rvoc.l "ab , neqarti1i/j-,i expr1r:ior, fnr the field (

radiated or scattered by a loss-free obstacle of arbitrary shape S in

terms of characteristic Functions defined i;, Ref. 11'. Ho? nntj-l for the

perfectly conducting obstacle that. each characteristic function is as-

sociated with a real characteristic current defined on S which gives
rise to equiphase fields throughout the volume occupied by the obstacle.

This observation, though not proven in a general way, led him to obtain

a characteristic equation

X 1i i58a)

or
E i = d (l+J>'i) 1Ji (56b) .

where J is the ith characteristic current associated with the ith

characteristic value x. and R and \ are the Real and Imagiiiary Hermitian
parts

1 �C (59)

X = _j _(,:-% (60)
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of the impedance operator 7 : R+jX of the obstacle i1]. The function

E is the ith characteristic field component tangential to the surface

S. The characteristic currents (Ji) simultaneously yield orthonormal

characteristic radiation patterns while they themselves have the ortho-

normality properties

(RJ. J.) = (61)R •a !

( di ) = X.6 . (62).' R 1 13 |

s

where the inner product is still defined by Equation (2).

We next proceed to discuss the set of eigenfunctions of the

Hermitian iterated operator as a set suitable for expanding fields

radiated or scattered by a perfectly cond.acting obstacle. To begin,

we note that the impedance operator - relating currert on S to tangential

field on S is an example of the operator G described in Section I1 and

so we can define eigensources and eigenfields in the manner already

described. In this case, the eigensources are currents Ki on the obstacle

surface and the Essnciated eigenfields are components of the electric

fields tangential to the same surface (making - unbounded). The eigen-

currents are solutions of Equation (6)

Z*7Kivi Ki (63)

satisfying the orthonormality conditions, (Eqiations (8) and (9))

(K 1,K.) i (64)
K R 13

s

YK I
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Note that the characteristic values X are always real and can take

values - = < ,i < o while the eigenvalues vi are always real and can take+

values 0 < vi. The characteristic values Xi -0 correspond to charac-

teristic currents which resonate the interior volume of the obstacle

while eigenvalues i = 0 correspond to this condition.

When the ambient medium is reciprocal, i.e., 7,__c, Equation (63)

can be reduced to a simpler and instructive form. Operating on Equation

(63) with -,

Z*(z Ki) vi(' Ki)

.c(Z K.) vi( Ki) (66)

and comparing this equation with Equation (63), conjugated,

c Kc = c (67)

iiwe see that : K. and Kc9 satisfy identical eigenvalue equations. This

being so, they must be related by a multiplicative constant ci, i.e.,

Ki ci K.C (68)

cEi = ci K.

where Ei is the ith eigerifield component tangential to the obstacle

surface. The magnitudes of ci are fixed by Equations (64) and (65)

to be

Ici1 2  = (69)

"while the phases of ci are not unique, being r'?lated to the arbitrary

phases of Ki by Equation (68). Thus, we can choose the phases of ci

28
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for convenience. One possible choice is c.i : i , purely imaginary

quantities, in which case Equation (68) can be rewritten
i

where KC. id K are the real and imaginary parts of K., respectively.

Another possible choice is c. 11/2 ejwci1 = where iarchsnso that•

the phase of fi is the negative ef the phase of Ki, that is, the eigen-

current K. and asseO'..Led eigenfield are scaled conjugate functions

over S. This latter choice for ci is general and provides an interesting

contrast between eigenmodes of the Hermitian iterated operator and

characteristic modes; namely, the real characteristic current J. and

its associated tangential field E, maintain a constant phase difference
over the surface S while their amplitude distributions differ in general

over S; on the other hand the generally complex eigencurrent K. and

its associated tangential field fi maintain the same (scaled) amplitude

distributions over S, while their phases vary over S in such a way as

to make them conjugate functions.

For those special conducting shapes S, such as the sphere, the

circular cylinder, the elliptic cylinder, etc, which correspond to,

constant coordinate surfaces of the separable coordinate systems, the

characteristic currents Ji and eigencurrents Ki become identical (except

for different real normalization constants) and their associated fields

Sand become identical (except for different real normalizationEi
constants). Thus, the modal currents and fields on S track in both

amplitude and phase. !n such special cases, the ratio of the ith modal

field and its current becomes a complex (in qeneral) number which remains

fixed over the entire surface and may be interpreted as the it h modal

impedance Z. z R. + jX. Then Equations (58), (68) and (69), together I
with the choice c* V e lead to

1 11
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tan-l (R)
c = +X 71)

or

and

X. =72b)

which indicate the connection between the eigenvalues v of the

Hermitian iterated operator and the characteristic values Xi,

j tan X.
ci = R. l + X, e (73a)

or
2 ?V. = (1 +

As examples, Equation (70) has been appiied to a thin straight

wire and infinite cyl irider of rectangular (.r,'os section, using the method

of moments , 101 to arrivwe at matrix representations for g and \. Values

of vi are shown in Figures 1]-13 as functions of electrical size of

tue obstacle. As expected in the case of the cylinder, where we pass

through resonances of the interior region we notice that certain vi

become zero for kh corresponding to cit-off frequencies of associated

waveguide modes. Those frequencies agree with theoretical values within

0.5% for the TM modes and within 0.24% for the TE in'l'•', one quarter

of the cylindrical ppriphery having been divided intr 13 parts for

application of the inethol of moments.
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Figure 11. Eigenvalues for a straight wire with length I andQ2 10.
The number of subdivisions in the computation by the

moment method is 20 for the half-length.
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Figure 12. Eigenvalue. of TM modes for a rectangular cylirdpr with
side-lengths b and 4b/9. The numbe- of subdivisions in the

computation by the moment method is 13 for one quarter
of the periphery.
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Figure 13. Eigenvalues of TE modes for a rectangular cylinder with
side-lengths b and 4b/9. The number of subdivisions in the

computation by the moment method is 13 for one quarter
of the periphery.
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V. CONCLUSIONS

By extending Parseval's relation to any combination of a source

and a field, we have arrived at an eigenvalue equation of a Hermitian

operator formed by iterating any general operator relating a source

and a field. The eigensources and corresponding eigenfields whici, are

solutions to this eigenvalue equation are complete and orthogonal over

the source and field regions, respectively. Any eigenvalue of the

equat'on is the ratio of the norm of the corresponding eigenfield and

the norm of the correspondinq eigensource. Except when the operator
is improperly singular, the completeness and orthogonality properties
of the eigensolutions inake them attractive for expanding arbitrary fields

and sources associated with discrete or continuous radiating or scat-

tering systems.

A few examples show the application of the theory to arrays and to

two planar apertures. Out of the latter work comes the interesting

observation that the theory applied to the operator' equation known as the

Fourier transform leads to eigenfunctions which are the prolate spheroidal
functions.

When the theory is applied to tne complex impedance matrix of

a conducting scatterinq obstacle, it is shown th.t the eigencurrents

and eigenfields introduced here are conjugates of each other, which

contrast with characteristic currents and fields of Garbacz, Harrington

and Mautz. Only in the case of obstacles corresponding to coordinates

of separable coordinate systems do the two modal types coincide.

The eigenfunction tienry is appl ied to the thin linear wire and

the rectangular cylinder and the corresponding sets of eigenmodes are

presented here. Results encourage the application of the theory to

other shapes and invite an investigation of the eigencurrent distributions

as well as the eigenvalur,;.
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